Abstract
The radical pair mechanism (RPM) of chemically induced dynamic electron polarization (CIDEP) is theoretically analyzed to determine what intermolecular separations (r eff) effectively contribute to the CIDEP generated from diffusive, separated radical-ion pairs (RIP) in terms of the chargetransfer interaction in the singlet-triplet energy splitting (J) by taking into account the distance-dependent electronic coupling and reorganization energy. The diffusion-model analysis reveals that the hyperfine-dependent RPM polarization (P RPM) phase is varied with the driving force (−ΔG CR) for the charge-recombination (CR) process and that the boundary −ΔG CR between the opposite phases coincides well with the total reorganization energy around the diffusible separation distance,r eff=1.2 nm, between the ion radicals. For the first time, ther eff is well described by the exponent parameter (β) in the distance-dependent electronic coupling, suggesting that the RPM CIDEP detection can be applied to characterize the electronic coupling in individual solvent-separated RIP systems. It has been concluded that, in contrast to the spin exchange interaction of the neutral radical pairs, the characteristic long-range charge-transfer interaction enables us to utilize the simple diffusion-model analysis to successfully evaluate ther eff and theP RPM in homogeneous liquid polar solvents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.