Abstract

A long-term goal of AI is to produce agents that can learn a diversity of skills throughout their lifetimes and continuously improve those skills via experience. A longstanding obstacle towards that goal is catastrophic forgetting, which is when learning new information erases previously learned information. Catastrophic forgetting occurs in artificial neural networks (ANNs), which have fueled most recent advances in AI. A recent paper proposed that catastrophic forgetting in ANNs can be reduced by promoting modularity, which can limit forgetting by isolating task information to specific clusters of nodes and connections (functional modules). While the prior work did show that modular ANNs suffered less from catastrophic forgetting, it was not able to produce ANNs that possessed task-specific functional modules, thereby leaving the main theory regarding modularity and forgetting untested. We introduce diffusion-based neuromodulation, which simulates the release of diffusing, neuromodulatory chemicals within an ANN that can modulate (i.e. up or down regulate) learning in a spatial region. On the simple diagnostic problem from the prior work, diffusion-based neuromodulation 1) induces task-specific learning in groups of nodes and connections (task-specific localized learning), which 2) produces functional modules for each subtask, and 3) yields higher performance by eliminating catastrophic forgetting. Overall, our results suggest that diffusion-based neuromodulation promotes task-specific localized learning and functional modularity, which can help solve the challenging, but important problem of catastrophic forgetting.

Highlights

  • We introduce a method based on diffusion that can produce the isolation of information in functional modules by inducing learning that corresponds to a specific subtask in a group of nodes and connections

  • To produce functional modules Ellefsen et al [16] evolved modular artificial neural networks (ANNs), via a connection cost, because that would allow for modular learning; where task-specific learning is turned on and off in different modules

  • While Ellefsen et al [16] showed that modular ANNs suffered less from catastrophic forgetting they did not see the emergence of different modules for different tasks, or the complete avoidance of catastrophic forgetting

Read more

Summary

Introduction

Structural modularity quantifies the connectivity pattern of nodes and connections, and is the most studied. Two methods to promote structural modularity during the evolution of an ANN include the CCT mentioned above, and constantly switching between different test problems that have the same subgoals [38]. Structural modularity in these works was quantified with the Q-Score metric [40] which quantifies the connectivity patterns of nodes and connections, and is the current state-of-the-art in module detection. Functional modularity involves modules that encode for some specific information, such as a subproblem or one of the tasks in a multitask problem [19].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call