Abstract

The study of ocular drug delivery systems has been one of the most covered topics in drug delivery research. One potential drug carrier solution is the use of materials that are already commercially available in ophthalmic lenses for the correction of refractive errors. In this study, we present a diffusion-based mathematical model in which the parameters can be adjusted based on experimental results obtained under controlled conditions. The model allows for the design of multi-layered therapeutic ophthalmic lenses for controlled drug delivery. We show that the proper combination of materials with adequate drug diffusion coefficients, thicknesses and interfacial transport characteristics allows for the control of the delivery of drugs from multi-layered ophthalmic lenses, such that drug bursts can be minimized, and the release time can be maximized. As far as we know, this combination of a mathematical modelling approach with experimental validation of non-constant activity source lamellar structures, made of layers of different materials, accounting for the interface resistance to the drug diffusion, is a novel approach to the design of drug loaded multi-layered contact lenses.

Highlights

  • The use of ophthalmic lenses (OLs) as drug carriers has been well established among the scientific community as a promising technique for increasing the efficacy of several ophthalmological therapies [1,2]

  • The main advantage of using OLs as drug carriers is that the immediate, uncontrolled delivery of drugs, such as by conventional eye drops and intravenous solutions, is prevented

  • We show that the initial burst may be minimized, and near zero-order release conditions may be achieved by properly selecting the relative dimensions and characteristics of the loaded/non-loaded layers of the lenses

Read more

Summary

Introduction

The use of ophthalmic lenses (OLs) as drug carriers has been well established among the scientific community as a promising technique for increasing the efficacy of several ophthalmological therapies [1,2]. The main advantage of using OLs as drug carriers is that the immediate, uncontrolled delivery of drugs, such as by conventional eye drops and intravenous solutions, is prevented. Drugs instilled as eye drops have a short residence time in the tear film, leading to a low drug bioavailability [3,4]. Therapeutic OLs may increase the ocular residence time of drugs, minimizing drug waste and side effects [1]. To achieve these goals, therapeutic OLs must deliver the drug in a controlled manner. Important questions that have impaired the commercial availability of such drug delivery systems must be solved. The main drawbacks that remain to be solved include the initial burst of drug release

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.