Abstract

Fluorescence correlation spectroscopy (FCS) is applied to investigate the diffusional dynamics of hydrophilic (Atto 590) and amphiphilic (DiD) fluorophores in a series of alkylphosphonium ionic liquid (IL) films ([P4448][Cl], [P6668][Cl], [P66614][Cl], and [P66614][NTf2]) in order to determine diffusional parameters and to elucidate nanoscale structural heterogeneities within the IL. From the measured correlation functions, the diffusion coefficients of the fluorescent molecules are estimated, rendering values that span from 0.39 to 1.2 and 0.146 to 5.2 μm2/s for Atto 590 and DiD, respectively. An increase in the diffusion coefficient values is correlated to the increase in the alkyl chain length, which in turn is correlated with a decrease in their viscosity. Interestingly, deviations from Brownian diffusion behavior of the fluorescent probes in the ILs are observed, showing a time-dependent diffusion coefficient in most of the cases. These deviations can be attributed to the presence of nanoscale structural heterogeneities in the tetraalkylphosphonium ILs. These results experimentally confirm the presence of nanosegregation in tetraalkylphosphonium ILs, which has been previously observed in molecular dynamics studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call