Abstract
We study diffusion on a substrate with permanent traps distributed with critical positional correlation, modeled by their placement on the perimeters of a critical percolation cluster. We perform a numerical analysis of the vibrational density of states and the largest eigenvalue of the equivalent scalar elasticity problem using the method of Arnoldi and Saad. We show that the critical trap correlation increases the exponent appearing in the stretched exponential behavior of the low frequency density of states by approximately a factor of two as compared to the case of no correlations. A finite size scaling hypothesis of the largest eigenvalue is proposed and its relation to the density of states is given. The numerical analysis of this scaling postulate leads to the estimation of the stretch exponent in good agreement with the density of states result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.