Abstract

Ultrahigh-molecular-weight polyethylene (UHMWPE) has been processed by means of sintering of a nascent powder. Particular attention was paid to the precompaction of the powder just below the melting point (Tm) under vacuum. The particle welding was subsequently carried out under pressure at various temperatures above Tm for various durations. Tensile drawing experiments performed on sintered samples either at room temperature or above Tm were specifically aimed at discriminating the role of chain interdiffusion through the particle interfaces from that of cocrystallization in the mechanism of particle welding. It turned out that efficient welding occurred within a very short time. One of the novel results of the work is the much weaker influence of sintering time as compared with temperature, giving evidence that chain interdiffusion is not governed by a reptation process. The entropy-driven melting explosion over distances much larger than the chain length between entanglements is suggested to be the main mechanism of the fast chain re-entanglement and particle welding in the present case of a nascent powder consisting of nonequilibrium chain-disentangled crystals. Another major aspect of this study is the demonstration of the huge cocrystallization efficiency in the interface consolidation in the solid state that significantly hides the kinetics of chain intertwining occurring in the melt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.