Abstract
A discussion is presented on the existence of a diffusion velocity for the vorticity vector that satisfies extensions of the Helmholtz vortex laws in a three-dimensional, incompressible, viscous fluid flow. A general form for the diffusion velocity is derived for a complex-lamellar vorticity field that satisfies the property that circulation is invariant about a region that is advected with the sum of the fluid velocity and the diffusion velocity. A consequence of this property is that vortex lines will be material lines with respect to this combined velocity field. The question of existence of diffusion velocity for a general three-dimensional vorticity field is shown to be equivalent to the question of existence of solutions of a certain Fredholm equation of the first kind. An example is given for which it is shown that a diffusion velocity satisfying this property does not, in general, exist. Properties of the simple expression for diffusion velocity for a complex-lamellar vorticity field are examined when applied to the more general case of an arbitrary three-dimensional flow. It is found that this form of diffusion velocity, while not satisfying the condition of circulation invariance, nevertheless has certain desirable properties for computation of viscous flows using Lagrangian vortex methods. The significance and structure of the noncomplex-lamellar part of the viscous diffusion term is examined for the special case of decaying homogeneous turbulence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.