Abstract
Requirements for improving the reliability, service life, and increasing a specific pulse of liquid-propellant rocket engines justify a need for transfer to new designs and manufacturing technologies of regenerative engine cooling system. The paper describes a advanced diffusion-vacuum technology of manufacturing a regenerative cooling circuit for liquid-propellant rocket engine based on the concept of inter-channel coolant transpiration through a porous metal mesh material. The method of diffusion welding of metal wire mesh in vacuum makes it possible to obtain large axisymmetric blanks of metal mesh materials necessary to manufacture the regenerative cooling path of the liquid-propellant rocket engine and recuperative heat exchanger (RHE). The possibility of developing a high-efficient low-gradient porous heat exchange path obtained using a metal mesh material (MMM) has been experimentally confirmed. It is recommended to use metal woven cloth and twill filter screens of standard size П24–П60, С120 as a basic material for manufacturing MMM. Key words: diffusion-vacuum technology, porous mesh material, regenerative cooling system, inter-channel coolant transpiration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.