Abstract

Spatial diffusion of particles in periodic potential models has provided a good framework for studying the role of chaos in global properties of classical systems. Here a bidimensional ``soft'' billiard, classically modeled from an optical lattice hamiltonian system, is used to study diffusion transitions with the control parameters variation. Sudden transitions between normal and ballistic regimes are found and characterized by inspection of the topological changes in phase-space. Transitions correlated with increases in global stability area are shown to occur for energy levels where local maxima points become accessible, deviating trajectories approaching it. These instabilities promote a slowing down of the dynamics and an island myriad bifurcation phenomenon, along with the suppression of long flights within the lattice. Other diffusion regime variations occurring during small intervals of control parameters are shown to be related to the emergence of a set of orbits with long flights, thus altering the total average displacement for long integration times but without global changes in phase-space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.