Abstract

The rates at which ions (86Rb+, [3H]-choline, 36Cl), 3H2O and nonelectrolytes ([14C]-urea, [14C]-glycerol, and [14C]-sugars) equilibrate across track-etched polyethyleneterephthalate (PETP) membranes (isotopic diffusion) have been measured by a 'static' and a 'dynamic' technique under conditions where no net flow takes place; the two techniques give essentially the same results. All tracers diffuse faster the longer the membranes are etched, consistent with an increase in pore size. Water and neutral solutes diffuse at rates that are relatively independent of ionic strength, pH or the presence of divalent cations. Diffusion of cations is decreased by high ionic strength, by reducing pH or by addition of divalent cations; diffusion of chloride is increased by these procedures. Treatment of the membrane with diazomethane to reduce the negative fixed charge decreases diffusion of cations and increases that of anions; diffusion of water and neutral solutes is unaffected by methylation except in the membranes with the narrowest pores (i.e., those etched for the shortest time), in which case diffusion is reduced. We conclude (1) that the special features of flow near a charged surface apply to ions but not to water or nonelectrolytes and (2) that calculation of absolute rates of diffusion leads to values for the radii of pores through track-etched PETP membranes that are in remarkably good agreement with measured values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call