Abstract
The mammillary bodies as part of the hypothalamic nuclei are in the central limbic circuitry of the human brain. The mammillary bodies are shown to be directly or indirectly connected to the amygdala, hippocampus, and thalami as the major gray matter structures of the human limbic system. Although it is not primarily considered as part of the human limbic system, the thalamus is shown to be involved in many limbic functions of the human brain. The major direct connection of the thalami with the hypothalamic nuclei is known to be through the mammillothalamic tract. Given the crucial role of the mammillothalamic tracts in memory functions, diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of this pathway noninvasively. This study aimed to investigate the utility of high spatial resolution diffusion tensor tractography for mapping the trajectory of the mammillothalamic tract in the human brain. Fifteen healthy adults were studied after obtaining written informed consent. We used high spatial resolution diffusion tensor imaging data at 3.0 T. We delineated, for the first time, the detailed trajectory of the mammillothalamic tract of the human brain using deterministic diffusion tensor tractography.
Highlights
Limbic system of the human brain is a collection of gray and white matter structures that supports a variety of functions including emotion, behavior, motivation, long-term memory, and olfaction
This work aimed to present for the first time the trajectory, connectivity, and descriptive anatomy of the mammillothalamic tract (MTT) in the human limbic system using a high resolution DTI protocol on 3 T and deterministic tractography approach[24]
The trajectory of the mammillothalamic tract and the anatomical parcellations of the MTT in relation to the forniceal columns and stria terminalis are demonstrated in the present study (Figs 3–5)
Summary
Limbic system of the human brain is a collection of gray and white matter structures that supports a variety of functions including emotion, behavior, motivation, long-term memory, and olfaction. Diffusion tensor tractography (DTT) is a robust technique based on diffusion tensor imaging which allows noninvasive vivo reconstruction of the trajectory of the neuronal fiber tracts[19] This technique may provide information about the course, integrity, anatomical connectivity, or possible disruption of neural pathways. Numerous anatomical details in the brain white matter connectivity including the delicate limbic structures have been undetectable or poorly detectable in prior DTT studies due to poor spatial resolution, low signal-to-noise ratio (SNR), and partial volume averaging upon using large voxel volumes[20,21,22,23]. This work aimed to present for the first time the trajectory, connectivity, and descriptive anatomy of the mammillothalamic tract (MTT) in the human limbic system using a high resolution DTI protocol on 3 T and deterministic tractography approach[24]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.