Abstract
BackgroundThere are currently no specific tests for either idiopathic Parkinson’s disease or Parkinson-plus syndromes. The study aimed to investigate the diagnostic performance of features extracted from the whole brain using diffusion tensor imaging concerning parkinsonian disorders. MethodsThe retrospective data yielded 625 participants (average age: 61.4 ± 8.2, men/women: 313/312; healthy controls/idiopathic Parkinson’s disease/multiple system atrophy/progressive supranuclear palsy: 219/286/51/69) between 2008 and 2017. Diffusion-weighted images were obtained using a 3T MR scanner. The 90th, 50th, and 10th percentiles of fractional anisotropy and mean/axial/radial diffusivity from each parcellated brain area were recorded. Statistical analysis was evaluated based on the features extracted from the whole brain, as determined using discriminant function analysis and support vector machine. 20% of the participants were used as an independent blind dataset with 5 times cross-verification. Diagnostic performance was evaluated by the sensitivity and the F1 score. ResultsDiagnoses were accurate for distinguishing idiopathic Parkinson’s disease from healthy control and Parkinson-plus syndromes (87.4 ± 2.1% and 82.5 ± 3.9%, respectively). Diagnostic F1 scores varied for Parkinson-plus syndromes with 67.2 ± 3.8% for multiple system atrophy and 71.6 ± 3.5% for progressive supranuclear palsy. For early and late detection of idiopathic Parkinson’s disease, the diagnostic performance was 79.2 ± 7.4% and 84.4 ± 6.9%, respectively. The diagnostic performance was 68.8 ± 11.0% and 52.5 ± 8.9% in early and late detection to distinguish different Parkinson-plus syndromes. ConclusionsFeatures extracted from diffusion tensor imaging of the whole brain can provide objective evidence for the diagnosis of healthy control, idiopathic Parkinson’s disease, and Parkinson-plus syndromes with fair to very good diagnostic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.