Abstract

The purpose of this study is to examine the relation between the microstructural architecture of white matter, as measured by diffusion tensor imaging (DTI), and postconcussion symptom reporting 6-8 weeks following mild traumatic brain injury (MTBI). Participants were 108 patients prospectively recruited from a Level 1 Trauma Center (Vancouver, BC, Canada) following an orthopedic injury [i.e., 36 trauma controls (TCs)] or MTBI (n = 72). DTI of the whole brain was undertaken using a Phillips 3T scanner at 6-8 weeks postinjury. Participants also completed a 5 h neurocognitive test battery and a brief battery of self-report measures (e.g., depression, anxiety, and postconcussion symptoms). The MTBI sample was divided into two groups based on ICD-10 criteria for postconcussional syndrome (PCS): first, PCS-present (n = 20) and second, PCS-absent (n = 52). There were no significant differences across the three groups (i.e., TC, PCS-present, and PCS-absent) for any of the neurocognitive measures (p = .138-.810). For the self-report measures, the PCS-present group reported significantly more anxiety and depression symptoms compared with the PCS-absent and TC groups (p < .001, d = 1.63-1.89, very large effect sizes). For the DTI measures, there were no significant differences in fractional anisotropy, axial diffusivity, radial diffusivity, or mean diffusivity when comparing the PCS-present and PCS-absent groups. However, there were significant differences (p < .05) in MD and RD when comparing the PCS-present and TC groups. There were significant differences in white matter between TC subjects and the PCS-present MTBI group, but not the PCS-absent MTBI group. Within the MTBI group, white-matter changes were not a significant predictor of ICD-10 PCS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call