Abstract

Porous materials such as concrete could be subjected to aggressive ions transport. Durability of cement paste is extremely depended on water and ions penetration into its interior sections. These ions transport could lead different damages depending on reactivity of ions, their concentrations and diffusion coefficients. In this paper, chloride diffusion process in cement hydrates is simulated at atomistic scale using molecular dynamics. Most important phase of cement hydrates is calcium silicate hydrate (C-S-H). Tobermorite, one of the most famous crystal analogues of C-S-H, is used as substrate in the simulation model. To conduct simulation, a nanopore is considered in the middle of simulation cell to place water molecules and aggressive ions. Different chloride salts are considered in models to find out which one is better for calculation of the transport properties. Diffusion coefficients of water molecules and chloride ions are calculated and validated with existing analytical and experimental works. There are relatively good agreements among simulation outputs and experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.