Abstract

We study the problem of distributed Kalman filtering and smoothing, where a set of nodes is required to estimate the state of a linear dynamic system from in a collaborative manner. Our focus is on diffusion strategies, where nodes communicate with their direct neighbors only, and the information is diffused across the network through a sequence of Kalman iterations and data-aggregation. We study the problems of Kalman filtering, fixed-lag smoothing and fixed-point smoothing, and propose diffusion algorithms to solve each one of these problems. We analyze the mean and mean-square performance of the proposed algorithms, provide expressions for their steady-state mean-square performance, and analyze the convergence of the diffusion Kalman filter recursions. Finally, we apply the proposed algorithms to the problem of estimating and tracking the position of a projectile. We compare our simulation results with the theoretical expressions, and note that the proposed approach outperforms existing techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.