Abstract

The optimum sequence parameters of diffusion spectrum MRI (DSI) on clinical scanners were investigated previously. However, the scan time of approximately 30min is still too long for patient studies. Additionally, relatively large sampling interval in the diffusion-encoding space may cause aliasing artifact in the probability density function when Fourier transform is undertaken, leading to estimation error in fiber orientations. Therefore, this study proposed a non-Cartesian sampling scheme, body-centered-cubic (BCC), to avoid the aliasing artifact as compared to the conventional Cartesian grid sampling scheme (GRID). Furthermore, the accuracy of DSI with the use of half-sphere sampling schemes, i.e. GRID102 and BCC91, was investigated by comparing to their full-sphere sampling schemes, GRID203 and BCC181, respectively. In results, smaller deviation angle and lower angular dispersion were obtained by using the BCC sampling scheme. The half-sphere sampling schemes yielded angular precision and accuracy comparable to the full-sphere sampling schemes. The optimum bmax was approximately 4750s/mm2 for GRID and 4500s/mm2 for BCC. In conclusion, the BCC sampling scheme could be implemented as a useful alternative to the GRID sampling scheme. Combination of BCC and half-sphere sampling schemes, that is BCC91, may potentially reduce the scan time of DSI from 30min to approximately 14min while maintaining its precision and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call