Abstract

We have developed an imaging biomarker for quantitatively monitoring the response to clinical treatment in cancer patients. Similar to other diffusion-weighted imaging DWI techniques, our method allows for the monitoring of breast cancer progression based on the diffusion coefficient values in the affected area. Our technique has the advantage of using images from mammograms and mesoscopic multiparticle collision MPC simulation, making it more affordable and easier to implement compared to other DWI techniques, such as diffusion-weighted MRI. To create our simulation, we start with the region of interest from a mammogram where the lesion is located and build a flat simulation box with impenetrable cylindrical obstacles of varying diameters to represent the tissue’s heterogeneity. The volume of each obstacle is based on the intensity of the mammogram pixels, and the diffusion coefficient is calculated by simulating the behavior of a point particle fluid inside the box using MPC. We tested our technique on two mammograms of a male patient with a moderately differentiated breast ductal carcinoma lesion, taken before and after the first cycle of four chemotherapy sessions. As seen in other DWI studies, our technique demonstrated significant changes in the fluid concentration map of the tumor lesion, and the relative values of the diffusion coefficient showed a clear difference before and after chemotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call