Abstract

Restricted or hindered motion of water across axonal membranes as characterized with diffusion-weighted (DW) imaging may be a potential marker of axonal damage in white matter (WM) injury due to trauma, neurodegeneration, or other causes. This study sought to determine whether high b-value DW imaging with a stimulated echo (STEAM) sequence could improve the spatially resolved assessment of tissue architecture in the human spinal cord in vivo. Diffusion times from 76ms to 1000ms and b-values of up to 14,750s/mm2 were used to acquire axial DW images in six healthy volunteers, and four additional healthy volunteers were studied with a protocol focused on high b-value, higher-resolution imaging. Mono-exponential, diffusional kurtosis, and mono-exponential with an additive constant (MEC) models were fit individually to diffusion decay curves obtained at different diffusion times. Diffusion restriction, characterized with the diffusional kurtosis and MEC models, was measured more precisely using higher b-value ranges. DW images at high b-value and fitting parameters using the large range of b-values available at the diffusion time of 1000ms demonstrated signal and restriction differences between gray and white matter and even across white matter regions. These white matter differences may reflect variations in axonal density, diameter, or alignment. We conclude that high b-value DW imaging with a STEAM sequence on a conventional clinical scanner can provide accurate measures of diffusion hindrance and restriction in human spinal cord in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.