Abstract
In this work, the diffusion quantum Monte Carlo (DMC) method is employed to calculate the energies of singlet and triplet states for a series of organic diradicals and diatomic diradicals with π2 configuration. Single-determinant-Jastrow (SDJ) trial wavefunctions for triplet states, two-determinant-Jastrow (2DJ) trial wavefunctions for the singlet states, and multi-determinant-Jastrow (MDJ) trial wavefunctions are employed in DMC calculations using restricted open-shell B3LYP (ROB3LYP) orbitals, complete-active-space self-consistent field (CASSCF) orbitals, state-average CASSCF orbitals, or frozen-CASSCF orbitals. Our results show that DMC energies using either SDJ/2DJ or MDJ with ROB3LYP orbitals are close to or lower than those with the other orbitals for organic diradicals, while they are not very sensitive to the employed orbitals for diatomic diradicals. Furthermore, using MDJ can reduce DMC energies to some extent for most of the investigated organic diradicals and some diatomic diradicals. The importance of MDJ on DMC energies can be estimated based on the percentage of main determinants in the CASCI wavefunction. On the other hand, singlet-triplet gaps can be calculated reasonably with DMC using MDJ with a mean absolute error of less than 2 kcal/mol with all these orbitals. CASCI wavefunctions using density functional theory orbitals are preferred in constructing MDJ trial wavefunctions in practical DMC calculations since it is easier to obtain such wavefunctions than CASSCF methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.