Abstract

The relationship between the diffusion behavior of hydrogen and the electrical properties of (Ba, Sr)TiO3 (BST) thin-film capacitors was investigated using thermal desorption spectroscopy and secondary ion mass spectroscopy analyses. It has been clearly shown that the frequency dependence of the complex impedance profile of the BST thin-film capacitors could be successfully represented by two parallel resistor-capacitor (RC) electrical equivalent networks in series correlated with the distribution of the hydrogen, namely, the Pt/BST interface region with the influence of hydrogen and the BST bulk region without the influence of hydrogen. However, the I-V properties of the BST thin-film capacitors could be determined almost from the hydrogen atoms existing at the Pt/BST interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.