Abstract

The depth profiles of high dosage Cr+52 and V+51 ions implanted in (100) crystalline silicon after thermal anneal at temperatures between 300 °C and 1000 °C are studied by secondary ion mass spectrometry and cross-sectional transmission electron microscopy. At dosages of 1×1015 ions/cm2 and above, the surface layer of silicon substrate is amorphorized. During the subsequent thermal annealing, the depth profiles of the implanted ions are strongly coupled with the solid phase epitaxial growth of amorphous silicon. Silicide precipitate formation is important to understand the differences between Cr and V diffusion. After anneal of the 1×1015 ions/cm2 implanted samples at 900 °C and 1000 °C, most of the Cr has left the silicon, but only 10% of the V has escaped. The 1×1014 ions/cm2 Cr-implanted sample shows Cr ions exist only near the surface after 1000 °C anneal. The V-implanted sample, on the other hand, only shows a narrowing of the V profile after 1000 °C anneal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call