Abstract

We consider diffusion processes on power-law small-world networks in different dimensions. In one dimension, we find a rich phase diagram, with different transient and recurrent phases, including a critical line with continuously varying exponents. The results were obtained using self-consistent perturbation theory and can also be understood in terms of a scaling theory, which provides a general framework for understanding processes on small-world networks with different distributions of long-range links.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.