Abstract

Diffusion of water in montmorillonite clays at low hydration has been studied on the microscopic scale by two quasi-elastic neutron scattering techniques, neutron spin-echo (NSE) and time-of-flight (TOF), and by classical microscopic simulation. Experiment and simulation are compared both directly on the level of intermediate scattering functions, I(Q, t), and indirectly on the level of relaxation times after a model of atomic motion is applied. Regarding the dynamics of water in Na- and Cs-monohydrated montmorillonite samples, the simulation and NSE results show a very good agreement, both indicating diffusion coefficients of the order of (1-3) x 10(-10) m(2) s(-1). The TOF technique significantly underestimates water relaxation times (therefore overestimates water dynamics), by a factor of up to 3 and 7 in the two systems, respectively, primarily due to insufficiently long correlation times being probed. In the case of the Na-bihydrated system, the TOF results are in closer agreement with the other two techniques (the techniques differ by a factor of 2-3 at most), giving diffusion coefficients of (5-10) x 10(-10) m(2) s(-1). Attention has been also paid to the elastic incoherent structure factor, EISF(Q). Simulation has played a key role in understanding the various contributions to EISF(Q) in clay systems and in clearly distinguishing the signatures of "apparent" and true confinement. Indirectly, simulation highlights the difficulty in interpreting the EISF(Q) signal from powder clay samples used in experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call