Abstract

Translational and rotational diffusion equation of single elements in solution in the external orienting potential forces has been formulated. The equation should govern long-range diffusion effects in the kinetics of nucleation and crystal growth. Boundary conditions, adequate to the reversible reaction of cluster growth typical for kinetic model of nucleation and accounting for steric limitations, has been proposed. Uniaxial single elements in uniaxial orienting force field are considered. Depression of the concentration of single elements at the cluster boundary as controlled by kinetic factors, is predicted i. e., chemical rate constants, finite translational and rotational diffusion, supercolling, and steric limitations. Effective rate constants, controlled by long-range diffusion of single elements at steric limitations present, have been used. Two dimensionless kinetic factors (i. e., reduced addition-reaction rate constant and reduced rotational diffusion constant), supercooling, and steric tolerance anlge range, control process kinetics and distribution of single elements in the cluster's surroundings. Rate reduction factor responsible for the effects of long-range diffusion at steric limitations present is defined and applied for kinetic models of nucleation and crystal growth in unoriented and oriented systems. Computation examples are performed for a wide range of the model variables, and rate reduction effects of several orders of magnitude are predicted. The dominating role ranges of particular model variables, i. e., kinetic, thermodynamic, or steric variables, are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.