Abstract

The diffusion of sodium polystyrene sulfonate through polycarbonate nanochanels was studied in salt-free dilute aqueous solution. A stronger molecular weight dependence of diffusion was observed compared to free diffusion in dilute solution. Scaling exponentials relating polymer size to diffusivity were between Flory's theory (Deff ∝ N−0.6) and Rouse's model (Deff ∝ N−1), revealing a crossover regime from 3-D diffusion to 1-D diffusion. Diffusion was less hindered for the polyelectrolyte (Deff/D0), than for a rigid sphere, when the polymer/channel size ratio exceeded 0.2. This is attributed to elongated chains with reduced frictional hindrance. Simulation of the confined diffusion based on an elongated cigar model gave D ∝ N−1 while the experimental results agree with D ∝ N−0.94. For charged polyelectrolytes, the transition to 1-D diffusion therefore begins before the polymer radius of gyration exceeds the channel size contrary to model assumptions. We attribute this to the charged nature of the polyelectrolytes causing extended chain conformations. © 2009 American Institute of Chemical Engineers AIChE J, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.