Abstract

The model problem of the formation of spectral lines in an absorbing and scattering atmosphere of finite optical depth with developed turbulence is stated and solved. The purpose of this paper is to clarify the influence of different kinds of spatial correlated nonthermal motions on observed line profiles. The method of invariant imbedding is used; it enables solution of this problem under rather general assumptions about the character of the turbulence, as well as about elementary scattering events and the distribution of energy sources in the medium. Special attention is devoted to the limits of macro- and microturbulence. It is shown that in the case of microturbulence, the reflectivity of the medium and its opacity are greater over the entire frequency range. It is also found that the dependence of the observed characteristics on the correlation length is stronger when medium is thicker and the average velocity of the turbulent motions is higher.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.