Abstract
We investigate the diffusion of particles adsorbed on a triangular lattice with deep and shallow sites. It is shown that the character of the particle migration depends substantially on the relative jump rates from the deep and shallow sites. The site inhomogeneity imposes specific correlation betweeen successive jumps: particles perform pairs of slow and fast jumps. General analytical expressions have been derived for the chemical and jump diffusion coefficients. We have calculated coverage dependencies of the diffusion coefficients and some thermodynamic quantities for different lateral interactions between the particles. The analytical data have been compared with the numerical data obtained by kinetic Monte Carlo simulations. The agreement between the results obtained by these quite different approaches is found to be very satisfactory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.