Abstract

The diffusivity of the oxygen ion in vitreous silica has been directly determined by exchange measurements employing the stable isotope 18O and mass spectrometer analysis. It was found that over the temperature range 925° to 1225°C the results can be represented by the equation D= 1.51 × 10−2 exp (‐71,200/RT) cm2 sec−1. These results are compared with other measurements of oxygen diffusion in silicate glasses. It is proposed that the controlling diffusion step in silicate glasses and nonstoichiometric silica is the rupture of a single oxygen bond to silicon and that the diffusion mechanism is interstitial motion through voids in the lattice. An analysis of theoretical expressions for the pre‐exponential term DO shows that present theories are unable to predict DO for oxygen diffusion in glasses. It is also shown that the mechanism for electrical conduction in vitreous silica or in electrolytically purified quartz is not migration of oxygen ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.