Abstract

Diffusion of three low-molecular-weight compounds cyclohexane (CX), benzene (BZ), and chloroform (CL) preferentially confined in the cores of nanoscale carriers was probed by pulsed field gradient (PFG) NMR methods. The carriers were monolayer micelles of sodium dodecyl sulfate (SDS), bilayer micelles of poly(hexyl methacrylate)-block-(acrylic acid) (M2), and trilayer micelles of poly(2-ethylhexyl methacrylate)-block-(methyl methacrylate)-block-(acrylic acid) (M3) in D(2)O at 300 K. Although the radius of the confinement space was 10(-)(8) m or lower, the course of the PFG signal attenuation in pulsed gradient spin-echo or stimulated echo experiments under varied diffusion time corresponds to apparently unrestricted diffusion, which is slowed down compared to that of the compound dissolved in D(2)O. Analysis using approximate relations reveals that the response of the system to PFG NMR consists of three independent components, namely (i) diffusion of the carrier as a whole, (ii) hindered escape of a confined molecule and its diffusion in the medium, and (iii) diffusion of the molecules dissolved in the medium. If process ii is fast enough, exchange of the compound between the carrier and the medium includes the influence of iii as a component of a monoexponential PFG decay; otherwise, two sets of signals are observed with different diffusion responses, or biexponential PFG is observed. According to the results of this study, the only barrier of the diffusion of the inspected compounds CX, BZ, and CL out of their confinement in the carriers SDS or M2 is a thermodynamic one, that is, the resistance of the saturated solution to accept surplus molecules of the solute. In a three-layer micelle M3, the additional polymer sheet around the confinement area forms an additional diffusion barrier for CX, however. The study shows that PFG NMR, though unable to observe directly restricted diffusion on the nanoscale, can be useful in studying systems designed, for example, for a controlled release of low-molecular-weight substances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call