Abstract

ABSTRACTIt is important to understand the diffusion sun light in sea ice as this interaction exerts a strong influence over the weather in polar regions and over the growth of microbial communities in the sub-ice water column. Sea ice is a granular composite of ice, brine, air and at low temperatures precipitated salts, in which the proportion and disposition of these components vary with depth, with temperature and thermal history. It is demonstrated that by using a simple in situ technique, supported by Monto Carlo simulations, the diffusive transport of light through a weakly absorbing composite such as sea ice can be characterised. The radiation field both within and emergent from the ice is found to reflect the anisotropic structure of the ice, in particular, the scattering is found to be highly anisotropic so that the light is channelled predominantly vertically. The technique will be illustrated with experimental results collected in McMurdo Sound, Antarctica.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call