Abstract

We present quantum dynamics calculations of the diffusion constant of H2 and D2 along a single-walled carbon nanotube at temperatures between 50 and 150 K. We calculate the respective diffusion rates in the low-pressure limit by adapting well-known approaches and methods from the chemical dynamics field using two different potential energy surfaces to model the C-H interaction. Our results predict a usual kinetic isotope effect, with H2 diffusing faster than D2 in the higher temperature range but a reverse trend at temperatures below 50-70 K. These findings are consistent with experimental observation in similar systems and can be explained by the different effective size of both isotopes resulting from their different zero-point energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.