Abstract

ABSTRACTDiffusion of Au into dislocation-free and highly dislocated Si with high B-background doping levels has been investigated with the aid of neutron activation analysis in conjunction with mechanical sectioning. The high B-doping level causes extrinsic conditions, i.e., the hole concentration exceeds the intrinsic carrier concentration even at diffusion temperatures between 900°C and 1100°C. All profiles are accurately described on the basis of the kick-out diffusion model and a mechanism which takes into account segregation of Au at dislocations. Our analysis provides solubility data of Au in Si and effective diffusion coefficients related to interstitial Au and Si self-interstitials I. The dependence of these quantities on the B-background doping level is well described by the Fermi-level effect. This analysis supports singly positively charged states in p-type Si of Au on interstitial (Aui) and substitutional (Aus) sites and of Si self-interstitials. Successful fitting of additionally requires an acceptor level of Aus. The electrical properties deduced for Aui, Aus and I are summarized in Table 2. Au profiles in highly dislocated Si obtained especially after diffusion at 900° C give evidence of Au trapped at dislocations. From our preliminary experimental results we determine an enthalpy difference of 2.7 eV between Au on substitutional sites and Au captured at dislocations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.