Abstract

The charging time-consuming and lifespan of lithium-ion batteries have always been the bottleneck for the tremendous application of electric vehicles. In this paper, cycle life tests are conducted to reveal the influence of different charging current rates and cut-off voltages on the aging mechanism of batteries. The long-term effects of charging current rates and cut-off voltages on capacity degradation and resistance increase are compared. The results show that there exists a critical charging current and a critical charging cut-off voltage. When the charging stress exceeds the critical value, battery degradation speed will be greatly accelerated. Furthermore, battery aging mechanisms at various charging currents and cut-off voltages are investigated using incremental capacity analysis. It is indicated that charging current and cut-off voltage should be reduced to retard battery degradation when the battery degrades to a certain extent. The time when the loss of electrode material accelerates is taken as the crisis to reduce charging current and the time when the loss of lithium inventory accelerates is taken as the crisis to reduce charging cut-off voltage. Moreover, an experiential model quantitatively describing the relationship between capacity degradation rate and charging stresses at different aging states is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.