Abstract

Effective diffusion coefficients (D(e)) of antibiotic A40926 and its deacylated derivative were determined in Ca-alginate (2% wt/wt) and kappa-carrageenan (2.6% wt/wt) gel beads with or without immobilized Actinoplanes teichomyceticus cells and/or soybean meal (SBM). The method used was based on transient concentration changes in a well-stirred antibiotic solution in which gel beads, initially free of solute, were suspended. Unsteady-state diffusion in a sphere was applied and D(e) determined from the best fit of experimental data. A40926 showed markedly different diffusion characteristics than its deacylated derivative. Diffusivity of deacyl-A40926 in alginate or carrageenan gel beads was six to seven times that of A40926. Large differences in partition coefficients (Kp) were also found. In case of beads without additions, A40926, in contrast to deacyl-A40926, strongly partitioned to the liquid phase. Introduction of SBM and/or mycelium in the gel beads decreased the effective diffusivity of deacyl-A40926, but increased its partitioning to the solid phase. Our findings indicate that a relatively moderate structural change of a lipoglycopeptide molecule could lead to a major change in its diffusion/partition characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.