Abstract

Biological and synthetic microswimmers display a wide range of swimming trajectories depending on driving forces and torques. In this paper we consider a simple overdamped model of self-propelled particles with a constant self-propulsion speed but an angular velocity that varies in time. Specifically, we consider the case of both deterministic and stochastic angular velocity reversals, mimicking several synthetic active matter systems, such as propelled droplets. The orientational correlation function and effective diffusivity is studied using Langevin dynamics simulations and perturbative methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call