Abstract
Abstract Alginate has been widely used in cell microencapsulation and drug delivery systems in the form of gel beads or microcapsules. Although an alternative novel emulsification-internal gelation technology has been established and both the properties and the potential applications of the beads in drug delivery systems have been studied, the mechanism has not been well understood compared with the traditional droplet method (external gelation technology). On the basis of our previous knowledge that the novel technology is composed of complicatedly consecutive processes with multistep diffusion and reaction, and the diffusion of acetic acid across oil/water interface being the prerequisite that determines the occurrence and rate for the reactions and the structures and properties of final produced gel beads, a special emphasis was placed on the diffusion process. With the aid of diffusion modeling and simple experimental design, the diffusion rate constant and diffusion coefficient of acetic acid across oil/water interface were determined to be in the orders of magnitude of 10 −6 and 10 −16 , respectively. This knowledge will be of particular importance in understanding and interpreting the formation, structure of the gel beads and the relationship between the structure and properties and guiding the preparation and quality control of the gel beads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.