Abstract

PurposeThe main objective of this study is to develop a 2D single-shot radial-DWI (2D ss-rDWI) technique to reduce motion artifacts and geometric distortion in DW images. MethodA diffusion-preparation module is developed and applied prior to the data acquisition. Because the diffusion-prepared longitudinal magnetization is measured over multiple RF excitations in each shot, 2D ss-rDWI is subject to low signal-to-noise ratio (SNR). We used variable-flip angle (VFA), random view ordering (RVO), and sliding spokes, and compared the performances to constant flip angle (CFA), smooth view ordering (SVO), and identical spoke averaging, respectively. For each technique, we performed numerical simulation and MRI experiments on a fluid phantom as well as in-vivo human brain studies with a 3 T MRI system. ResultsUsing VFA, optimal SNR was acquired for 2D ss-rDWI. Using SVO, the high signal is clustered at specific quadrant in 2D k-space: the first quadrant using high initial flip angle or the last quadrant using the low flip angle. This clustered signal in k-space led to geometric distortion in image space. 2D ss-rDWI using RVO spreads the high signaled spokes over all angular directions and removes the view-order-related distortion. The in-vivo images using 2D ss-rDWI with VFA and RVO show no geometric distortion at the skull base brain, but greatly reduced SNR compared with those using 2D ss-DWEPI. Conclusion2D ss-rDWI is optimized by using VFA with RVO. The resultant DWI using 2D ss-rDWI is insensitive to motion-induced artifacts and geometric distortion. Even with low SNR, it may be useful for DWI of organs limited by severe susceptibility-induced geometric distortion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call