Abstract

Objective. The use of non-invasive techniques for the estimation of structural brain networks (i.e. connectomes) opened the door to large-scale investigations on the functioning and the architecture of the brain, unveiling the link between neurological disorders and topological changes of the brain network. This study aims at assessing if and how the topology of structural connectomes estimated non-invasively with diffusion MRI is affected by the employment of tractography filtering techniques in structural connectomic pipelines. Additionally, this work investigates the robustness of topological descriptors of filtered connectomes to the common practice of density-based thresholding. Approach. We investigate the changes in global efficiency, characteristic path length, modularity and clustering coefficient on filtered connectomes obtained with the spherical deconvolution informed filtering of tractograms and using the convex optimization modelling for microstructure informed tractography. The analysis is performed on both healthy subjects and patients affected by traumatic brain injury and with an assessment of the robustness of the computed graph-theoretical measures with respect to density-based thresholding of the connectome. Main results. Our results demonstrate that tractography filtering techniques change the topology of brain networks, and thus alter network metrics both in the pathological and the healthy cases. Moreover, the measures are shown to be robust to density-based thresholding. Significance. The present work highlights how the inclusion of tractography filtering techniques in connectomic pipelines requires extra caution as they systematically change the network topology both in healthy subjects and patients affected by traumatic brain injury. Finally, the practice of low-to-moderate density-based thresholding of the connectomes is confirmed to have negligible effects on the topological analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.