Abstract

To solve the problem of long sampling time for diffusion magnetic resonance imaging (dMRI), in this study we propose a dMRI super-resolution reconstruction network. This method not only uses a three-dimensional (3D) convolution kernel to reconstruct the dMRI data in the space and angle domains, but also introduces an adversarial learning and attention mechanism to solve the problem of the traditional loss function not fully quantifying the gap between high-dimensional data and not paying more attention to important feature maps. Experimental results from the comparison of peak signal-to-noise ratio, structural similarity, and orientation distribution function visualization show that these methods bring better results. They also prove the feasibility of using an attention mechanism in dMRI reconstruction and the use of adversarial learning in a 3D convolution kernel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.