Abstract

As our planet is entering into the “global boiling” era, understanding regional climate change becomes imperative. Effective downscaling methods that provide localized insights are crucial for this target. Traditional approaches, including computationally-demanding regional dynamical models or statistical downscaling frameworks, are often susceptible to the influence of downscaling uncertainty. Here, we address these limitations by introducing a diffusion probabilistic downscaling model (DPDM) into the meteorological field. This model can efficiently transform data from 1° to 0.1° resolution. Compared with deterministic downscaling schemes, it not only has more accurate local details, but also can generate a large number of ensemble members based on probability distribution sampling to evaluate the uncertainty of downscaling. Additionally, we apply the model to generate a 180-year dataset of monthly surface variables in East Asia, offering a more detailed perspective for understanding local scale climate change over the past centuries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.