Abstract

ABSTRACTBasing our calculations on a realistic N-body interatomic potential for Zr, we study the vacancy migration mechanism and determine the related diffusion coefficient in the bcc phase. The form of the potential energy along the nearest-neighborjump migration path is single-peaked. The vacancy jump rate determined by molecular dynamics simulations has a perfectly Arrhenian behavior and its activation energy is very close to the static value of the vacancy migration energy, both being very low (≈ 0.3 eV) . The diffusion coefficient is in very satisfactory agreement with experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.