Abstract

We investigate the performance of distributed least-mean square (LMS) algorithms for parameter estimation over sensor networks where the regression data of each node are corrupted by white measurement noise. Under this condition, we show that the estimates produced by distributed LMS algorithms will be biased if the regression noise is excluded from consideration. We propose a bias-elimination technique and develop a novel class of diffusion LMS algorithms that can mitigate the effect of regression noise and obtain an unbiased estimate of the unknown parameter vector over the network. In our development, we first assume that the variances of the regression noises are known a-priori. Later, we relax this assumption by estimating these variances in real-time. We analyze the stability and convergence of the proposed algorithms and derive closed-form expressions to characterize their mean-square error performance in transient and steady-state regimes. We further provide computer experiment results that illustrate the efficiency of the proposed algorithms and support the analytical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.