Abstract

Diffusion-limited reactions are usually described within the Smoluchowski theory, which neglects interparticle interactions. We propose a simple way to incorporate excluded-volume effects building on simulations of hard sphere in the presence of a sink. For large values of the sink-to-particle size ratio R(s), the measured encounter rate is in good agreement with a simple generalization of the Smoluchowski equation at high densities. Reducing R(s), the encounter rate is substantially depressed and becomes even nonmonotonic for R(s)<<1. Concurrently with the saturation of the rate, stationary density waves set in close to the sink. A mean-field analysis helps to shed light on the subtle link between such ordering and the slowing down of the encounter dynamics. Finally, we show how an infinitesimal amount of nonreacting impurities can equally slow down dramatically the reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.