Abstract

In ionic solutions, there are multi-species charged particles (ions) with different properties like mass, charge etc. Macroscopic continuum models like the Poisson–Nernst–Planck (PNP) systems have been extensively used to describe the transport and distribution of ionic species in the solvent. Starting from the kinetic theory for the ion transport, we study a Vlasov–Poisson–Fokker–Planck (VPFP) system in a bounded domain with reflection boundary conditions for charge distributions and prove that the global renormalized solutions of the VPFP system converge to the global weak solutions of the PNP system, as the small parameter related to the scaled thermal velocity and mean free path tends to zero. Our results may justify the PNP system as a macroscopic model for the transport of multi-species ions in dilute solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.