Abstract

This paper is devoted to the diffusion and anomalous diffusion limit of the Fokker-Planck equation of plasma physics, in which the equilibrium function decays towards zero at infinity like a negative power function. We use probabilistic methods to recover and extend the results obtained in [22]. We prove in particular, in the critical case where the classical diffusion coefficient is no more defined, that the small mean free path limit gives rise to a diffusion equation, with an anomalous time scaling and with a variance breaking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.