Abstract

Modified method of surface photovoltage (SPV), spectral response measurement, and constant photocurrent method (CPM) were applied to thin film CdS/CdTe solar cells with the aim of finding diffusion length of minority carriers (L) in the CdTe material. The SPV signal was theoretically calculated without constraints of absorption coefficients for the incident radiation and thickness of the sample assuming one space charge region (SCR) located on the CdS/CdTe interface. In addition to the diffusion length, the SPV is a function of the surface recombination velocity and the parameters of the SCR, which complicates the evaluation. Illuminating the back side of the solar cell (without ohmic contact) we obtain a photovoltage spectrum predominantly influenced by the diffusion length. On the other hand, the standard measurement using light penetrating from the CdS side strongly depends on the thickness of the SCR. The small signal approximation model presented here successfully explains both measured spectra and permits extraction of the diffusion length of minority carriers and thickness of the SCR in CdTe absorber. The CPM is used for determination of absorption coefficients in the CdTe layer. The absorption of this material depends on its preparation and must be known for correct evaluation of experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call