Abstract

To evaluate novel neuroimaging biomarkers for monitoring brain injury using diffusion kurtosis imaging (DKI) in patients with severe diffuse axonal injury. DKI data of 12 patients with severe DAI (11 patients with a Glasgow Coma Scale (GCS) score of ≤ 8 and 1 patient with a GCS score of 9) and 8 healthy volunteers (control group) were compared. MRI examination was performed 5 to 19 days after injury; 7 of the 12 patients underwent repeated MRI examinations. We assessed the following parameters: mean, axial, and radial kurtosis (MK, AK, RK, respectively) and kurtosis anisotropy (KA) of the white and gray matter; fractional anisotropy (FA), axonal water fraction (AWF), axial and radial extra-axonal diffusion (AxEAD and RadEAD, respectively), and tortuosity (TORT) of the extra-axonal space) of the white matter. Regions of interest (ROIs) were set bilaterally in the centrum semiovale, genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, putamen, thalamus, midbrain, and pons. A significant reduction in KA (p<0.05) in most of ROIs set on the white matter was revealed. AK was increased (p<0.05) not only in the white matter but also in the putamen and thalamus. A significant reduction in MK with time was observed when the first and second DKI data were compared. AWF was reduced in the centrum semiovale and peduncles. The TORT parameter was decreased (p<0.05) in the majority of ROIs in the white matter, with the most pronounced changes occurring in the genu and splenium of the corpus callosum. DKI provides novel data about microstructural injury in DAI and improves our knowledge of brain trauma pathophysiology. DKI parameters should be considered as potential biomarkers of brain injury and potential predictors of the outcome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.