Abstract
We study the connections between discrete one-dimensional schemes for nonlinear diffusion and shift-invariant Haar wavelet shrinkage. We show that one step of a (stabilised) explicit discretisation of nonlinear diffusion can be expressed in terms of wavelet shrinkage on a single spatial level. This equivalence allows a fruitful exchange of ideas between the two fields. In this paper we derive new wavelet shrinkage functions from existing diffusivity functions, and identify some previously used shrinkage functions as corresponding to well known diffusivities. We demonstrate experimentally that some of the diffusion-inspired shrinkage functions are among the best for translation-invariant multiscale wavelet denoising. Moreover, by transferring stability notions from diffusion filtering to wavelet shrinkage, we derive conditions on the shrinkage function that ensure that shift invariant single-level Haar wavelet shrinkage is maximum---minimum stable, monotonicity preserving, and variation diminishing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.