Abstract

When a Hamiltonian system undergoes a stochastic, time-dependent anharmonic perturbation, the values of its adiabatic invariants as a function of time follow a distribution whose shape obeys a Fokker–Planck equation. The effective dynamics of the body’s centre-of-mass during human walking is expected to represent such a stochastically perturbed dynamical system. By studying, in phase space, the vertical motion of the body’s centre-of-mass of 25 healthy participants walking for 10 min at spontaneous speed, we show that the distribution of the adiabatic invariant is compatible with the solution of a Fokker–Planck equation with a constant diffusion coefficient. The latter distribution appears to be a promising new tool for studying the long-range kinematic variability of walking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call