Abstract

The time-dependent behavior of the nonlinear distributions defined by the diffusion equation with several nonlinear source terms is studied. The nonlinear diffusion equation is solved by an eigenfunction-expansion method, which is in principle independent of geometry or number of dimensions. The qualitative time behavior of the distributions and their steady states can be ascertained from a simple analysis of the fundamental mode approximation only. Explicit solutions are presented in one- and two-dimensional geometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.